

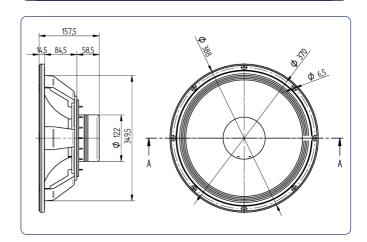
15P80/Nd

LOW FREQUENCY TRANSDUCER
P80 Series

KEY FEATURES

- 1.600 W program power
- High sensitivity: 100 dB (1W / 1m)
- FEA optimized magnetic circuit.
- Forced air convection circuit for low power compression.
- · CONEX spider for higher resistance and consistency.
- Waterproof treatment for both sides of the cone.
- 4" duo technology voice coil.
- Extended controlled displacement: X_{max} ± 7,5 mm
- Massive mechanical displacement capability:
 X_{damage} ± 52 mm

TECHNICAL SPECIFICATIONS


Nominal diameter	380 mm 15 in
Rated impedance	8 Ω
Minimum impedance	5,5 Ω
Power capacity*	800 W _{AES}
Program power	1600 W
Sensitivity	100 dB 1W @ 1m @ Z _N
Frequency range	30 - 4.000 Hz
Recom. enclosure vol.	40 / 150 I 1,41 / 5,3 ft ³
Voice coil diameter	100 mm 4 in
Magnetic assembly weight	4,6 kg 10,15 lb
BI factor	24,3 N/A
Moving mass	0,101 kg
Voice coil length	20 mm
Air gap height	12 mm
X _{damage} (peak to peak)	52 mm

THIELE-SMALL PARAMETERS**

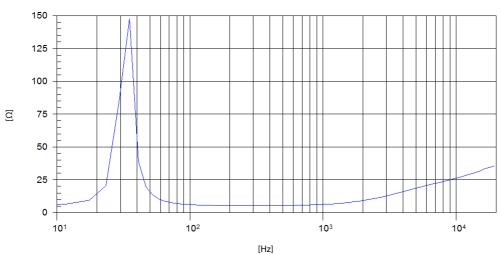
Resonant frequency, f _s	33 Hz
D.C. Voice coil resistance, R _e	5,1 Ω
Mechanical Quality Factor, Q _{ms}	7,7
Electrical Quality Factor, Q _{es}	0,182
Total Quality Factor, Q _{ts}	0,178
Equivalent Air Volume to C _{ms} , V _{as}	250 I
Mechanical Compliance, C _{ms}	$229~\mu m$ / N
Mechanical Resistance, R _{ms}	2,73 kg / s
Efficiency, η ₀	4,77 %
Effective Surface Area, S _d	$0,088 \text{ m}^2$
Maximum Displacement, X _{max} ***	7,5 mm
Displacement Volume, V _d	660 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,8 mH

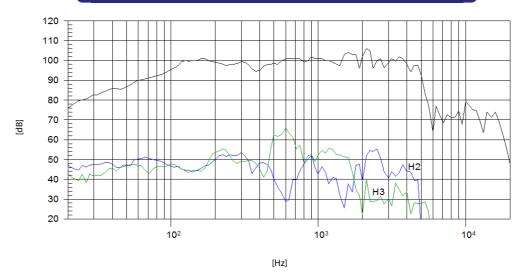
DIMENSION DRAWINGS

MOUNTING INFORMATION

Overall diameter	388 mm	15,28 in
Bolt circle diameter	370 mm	14,57 in
Baffle cutout diameter:		
- Front mount	349,5 mm	13,76 in
- Rear mount	355 mm	13,98 in
Depth	157,5 mm	6,2 in
Volume displaced by driver	5,5 I	0,19 ft ³
Net weight	6 kg	13,3 lb
Shipping weight	6,5 kg	14,3 lb

Notes:


- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{vc} H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.


15P80/Nd

LOW FREQUENCY TRANSDUCER P80 Series

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)

• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •